{"id":21110,"date":"2016-02-02T22:40:53","date_gmt":"2016-02-02T22:40:53","guid":{"rendered":"https:\/\/yaabot.com\/?p=21110"},"modified":"2024-01-18T19:59:33","modified_gmt":"2024-01-18T14:29:33","slug":"gravitational-waves-theoretical-concept-physical-reality","status":"publish","type":"post","link":"https:\/\/entropymag.co\/gravitational-waves-theoretical-concept-physical-reality\/","title":{"rendered":"What Are Gravitational Waves – Theoretical Concept or Physical Reality?"},"content":{"rendered":"\n

Gravitational Waves, an intriguing aspect of the cosmos, have become a key focus in the ongoing quest to unravel the mysteries surrounding the birth of the universe. The enigma of the universe continues to captivate physicists and laymen alike, prompting a mathematical exploration of its history and a prediction of the past. As scientists analyze electromagnetic radiation, encompassing visible light, x-rays, radio waves, microwaves, and subatomic particles, a surge of new theories has led to ambiguity and contradictory pictures regarding our existence. <\/p>\n\n\n\n

Albert Einstein’s realization that the evolution of the universe from ‘nothing’ to ‘everything’ has left discernible footprints underscores the significance of studying Gravitational Waves. These elusive waves provide a unique lens through which we can explore and analyze the cosmic events that have shaped the very fabric of our cosmos, offering potential insights into the profound origins of our universe.<\/p>\n\n\n\n

Relativity’s Gravitational Waves<\/h2>\n\n\n\n

The General theory of Relativity (formulated almost exactly a hundred years from now) was one of the boldest and most pioneering contributions made by Einstein. GTR, much like its predecessor, the Special Theory of Relativity revolutionised our understanding of space and time. Einstein went beyond Newton’s Law of Universal gravitation and conceptualised gravity as not merely a force, but as a geometric property of the space-time model and a consequence of the inherent curvature of space-time.<\/p>\n\n\n\n

According to the GTR, space-time isn’t flat at all but curved because of the influence of mass-energy. The underlying mathematics of General Relativity is Riemannian geometry, which is a generalised form of Euclidean geometry that deals with Non Euclidean space. The curvature of space time is directly related to the energy or momentum of the present matter or radiation expressed in Einstein\u2019s set of ten field equations. <\/p>\n\n\n\n

The curvature is caused by the presence of mass and changes proportionally with mass volume ratio i.e. density. As objects with mass move around in spacetime, the curvature changes to reflect the changed locations of those objects. In some cases, massive accelerating objects disrupt space and time in such way that the \u201cinformation\u201d passes outwards in the form of waves and with same speed as that of electromagnetic waves. These wave are known as gravitational waves.<\/p>\n\n\n\n

\n

<\/p>\n<\/blockquote>\n\n\n

\n
\"J0806,<\/a>
Chandra data \u00a0on J0806\u00a0– source<\/a><\/figcaption><\/figure><\/div>\n\n\n

Chandra data  on J0806 shows that its X-rays vary with a period of 321.5 seconds, or slightly more than five minutes. This implies that the X-ray source is a binary star system where two white dwarf stars are orbiting each other (above, illustration) only 50,000 miles apart, making it one of the smallest known binary orbits in the Galaxy. According to Einstein’s General Theory of Relativity, such a system should produce gravitational waves – ripples in space-time – that carry energy away from the system and cause the stars to move closer together. X-ray and optical observations indicate that the orbital period of this system is decreasing by 1.2 milliseconds every year, which means that the stars are moving closer at a rate of 2 feet per year.<\/span><\/p>\n\n\n\n

These ripples are of great importance to the understanding of our universe. Large celestial bodies radiate these waves which, astonishingly, are an\u00a0encryption of their \u201cgenes\u201d. The carried information not only reveals their cataclysmic origin but also provides thorough insights to the nature of gravity itself. After the prediction of gravitational waves, an inevitable consequence of GTR, science waited until 1974 to behold the practical existence of gravitational waves. <\/p>\n\n\n\n

Two astronomers from the Arecibo Radio Observatory in Puerto Rico discovered a binary pulsar (highly magnetized rotating neutron star); two extremely dense and heavy stars orbiting around each other. This was the ideal system to show gravitational waves. After forty years of constant study, the system fitted into the GTR predictions with a very high level of accuracy which indirectly hinted at the presence of gravitational waves.<\/p>\n\n\n\n

Related: A Noob\u2019s Guide to the Theory of Quantum Gravity<\/a><\/strong><\/p>\n\n\n\n

However, the discoveries were all indirect and were insufficient to prove the existence of gravitational waves, for which direct detection was essential. With this aim, the Laser Interferometer Gravitational-Wave Observatory (LIGO) and ESA’s Laser Interferometer Space Antenna (Elisa) along with multiple other pulsar timing arrays were made to aid in the process of detection.<\/p>\n\n\n\n

Decoding Gravitational Waves<\/h2>\n\n\n\n

Gravitational waves are not<\/em><\/strong> electromagnetic waves. <\/em>Two colliding black holes release almost no electromagnetic energy. However, the system sends highly energized gravitational waves which are distortion free and noise less as they stay aloof when it comes to interaction with other objects.<\/p>\n\n\n\n

Gravitational waves are generated even with the slightest acceleration change of humans, cars, moving objects etc. But they are of extremely negligible range which makes them practically undetectable by even the most sophisticated instruments. Additionally, gravitational waves are nearly impossible to generate on earth, unlike the famous Higgs Boson which was detected in the LHC. For these reasons, scientists wait for the minutest signal to be detected which originate from black holes, neutron stars and new galaxy formations etc.<\/p>\n\n\n\n

These waves come are of four different types namely Continuous Gravitational waves, Compact Binary Inspiral Gravitational Waves, Stochastic Gravitational Waves and Burst Gravitational waves.  <\/strong>Each have their unique characteristics:<\/p>\n\n\n

\n
\"binary<\/a>
Binary pulsar in which both neutron stars are radio pulsars – source<\/a><\/figcaption><\/figure><\/div>\n\n\n

Continuous Gravitational waves<\/strong>: Generated from large single spinning bodies as massive as a Neutron star – any deformations or bumps in the spin can produce a huge ripple which has a time independent frequency and amplitude. Hence the name Continuous Gravitational waves. Researchers simulated their predictions on CGW and processed a sound which is the sound equivalent of gravitational waves.<\/p>\n\n\n\n

Compact Binary Inspiral Gravitational Waves: <\/strong>These waves are produced by orbiting pairs of massive and dense (hence ‘compact’) objects like white dwarf stars, black holes and neutron stars. There are three kinds of “compact binary” systems in this category of gravitational wave generators:<\/p>\n\n\n\n